Properties & Synthesis Of Polyimide

- Oct 29, 2019-


Properties

Thermosetting polyimides are known for thermal stability, good chemical resistance, excellent mechanical properties, and characteristic orange/yellow color. Polyimides compounded with graphite or glass fiber reinforcements have flexural strengths of up to 50,000 psi (340 MPa) and flexural moduli of 3,000,000 psi (21,000 MPa). Thermoset polymer matrix polyimides exhibit very low creep and high tensile strength. These properties are maintained during continuous use to temperatures of up to 232 °C (450 °F) and for short excursions, as high as 704 °C (1,299 °F). Molded polyimide parts and laminates have very good heat resistance. Normal operating temperatures for such parts and laminates range from cryogenic to those exceeding 260 °C (500 °F). Polyimides are also inherently resistant to flame combustion and do not usually need to be mixed with flame retardants. Polyimide laminates have a flexural strength half life at 249 °C (480 °F) of 400 hours.

Typical polyimide parts are not affected by commonly used solvents and oils — including hydrocarbons, esters, ethers, alcohols and freons. They also resist weak acids but are not recommended for use in environments that contain alkalis or inorganic acids. Some polyimides, such as CP1 and CORIN XLS, are solvent-soluble and exhibit high optical clarity. The solubility properties lend them towards spray and low temperature cure applications.

Synthesis

Several methods are possible to prepare polyimides, among them:

The reaction between a dianhydride and a diamine (the most used method).

The reaction between a dianhydride and a diisocyanate.

Dianhydrides used as precursors to these materials include pyromellitic dianhydride, benzoquinonetetracarboxylic dianhydride and naphthalene tetracarboxylic dianhydride. Common diamine building blocks include 4,4'-diaminodiphenyl ether ("DAPE"), meta-phenylenediamine ("MDA"), and 3,3-diaminodiphenylmethane. Hundreds of diamines and dianhydrides have been examined to tune the physical and especially the processing properties of these materials. These materials tend to be insoluble and have high softening temperatures, arising from charge-transfer interactions between the planar subunits.